데이터학습1 AI 모델 근친교배로 인한 환각 효과 오늘은 AI 모델 개발에서 주목해야 할 중요한 주제인 "AI 모델 근친교배"와 이로 인해 발생할 수 있는 "환각 효과"에 대해 알아보겠습니다. 이 주제는 AI 기술의 발전과 함께 부상하고 있는 중요한 문제로, 다양한 연구와 논의가 이루어지고 있습니다.AI 모델 근친교배란 무엇인가요?AI 모델 근친교배는 AI 모델이 사람에 의해 생성된 데이터 대신, 다른 AI 모델이 생성한 데이터를 학습하는 현상을 의미합니다. 이러한 과정은 데이터 품질 저하를 초래하고, 결과적으로 AI의 성능에 부정적인 영향을 미칠 수 있습니다. 예를 들어, 모델 붕괴(Model Collapse) 현상이 발생할 수 있습니다. 이 현상은 모델이 스스로 생성한 데이터에 의존하여 학습할 때, 비논리적이거나 불완전한 정보를 생산하게 되는 상황을.. 2024. 8. 24. 이전 1 다음